
Connection between Coulomb and oscillator problems

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1979 J. Phys. A: Math. Gen. 12 L7

(http://iopscience.iop.org/0305-4470/12/1/003)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 19:00

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/12/1
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen., Vol. 12, No. 1, 1979. Printed in Great Britain 

LETTER TO THE EDITOR 

Connection between Coulomb and oscillator problems 

N Rowley 
Department of Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, 
UK 

Received 9 October 1978 

Abstract. A connection between the energy eigenvalues of the Coulomb and three- 
dimensional oscillator potentials is shown both semiclassically and quantum mechanically. 
The transformation between the corresponding wavefunctions is obtained and is used to 
give a new derivation of the transmission factor for a one-dimensional parabolic barrier. 

It has long been known (e.g. Kemble 1937) that the WKB eigenvalues for the Coulomb 
and three-dimensional oscillator potentials share the distinction of being exact for all 
values of the angular momentum f and the radial quantum number n (the number of 
nodes in the radial wavefunction). The semiclassical quantisation condition for the 
energy E = E(n,  1) of a particle of mass m bound in a potential V ( r )  is given by the 
Bohr-Sommerfeld integral (Kemble 1937) 

where we are using units such that h = 1. Note that the Langer transformation 
1(1+ 1) + (1 + 3)’ which has been applied to the centrifugal term in equation (1) is not a 
‘classical’ approximation but a necessary prerequisite for the application of the WKB 
method to the radial Schrodinger equation defined in the region r 3 0 (Berry and Mount 
1972). 

The limits of integration rl,’ in equation (1) are just the bounds of the classical 
motion, i.e. the points where the ‘effective’ radial momentum peff(r) vanishes. It is 
essentially the fact that the two problems we are considering possess no other real or 
complex solutions to pe,-,(r) = 0 (except at - r1.2 for the oscillator) which renders 
equation (1) exact in these cases (Kemble 1937). The object of this letter is to further 
illuminate the similarity between these problems. 

For the oscillator potential $mw2rz equation (1) becomes 

and a direct evaluation of this expression exactly yields the correct eigenvalues 

E(n,  I) = (2n + 1 +$)W. (3) 
Consider now the change of variables r2 = x in the above integral. We readily obtain 
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where x1,2 = r:,*. This equation now has exactly the same form as the quantisation 
condition for a particle of mass m with energy E‘ and angular momentum I’ bound in a 
Coulomb potential z / x ,  i.e. 

(2m)”’ [ E ’ - Z / X  - ( l ’ + i ) 2 / 2 m x 2 ] ” 2  dx = ( n  +;)T ( 5 )  

- gmw 1 2  = E’ = E‘(n, l ’ ) ,  

if we make the transformations 
1 1  z and 21-a=1’ .  (6a,b,c) 

We do not, therefore, need to solve the Coulomb energy level problem separately, for 
inserting these expressions into equation (3) immediately gives 

- -& = 

- 4 ~ = ( ” + 2 1 ‘ + 2 ) ( - 8 E ’ / m ) ’ ’ ~  or E‘(n, l ’ )=  - m ~ ~ / 2 ( n + I ‘ + l ) ~  (7) 

which is the correct expression for the bound states of the attractive Coulomb potential. 
(Ncte that the condition E > 0 in equation (3) automatically gives z < 0 from equation 
(6bI.l 

The transformations (6 )  may also be obtained from the exact radial Schrodinger 
equation. If we write the full wavefunction $lnm(r, 6, 4 )  = ( , y ( r ) / r )  Y;“ (6,  4) ,  with the 
usual notation, then for the oscillator x satisfies the equation 

- i o s c ( r ) =  2m[,5-;mw2r2-  + 1)/2mr21,yosc(r) (8)  
where dots denote differentiation with respect to r. We again wish to make the 
substitution r2 = x, but since this will introduce first derivatives on the left of equation 
(8) we also make the transformation ,yosc(r) = g(x),y(x) and choose g(x) so that there is 
no term in ,y’ in the new equation (primes denote differentiation with respect to x ) .  We 
obtain 

io,,= 2(g,y’+g”x(g,y’’+2g’,y’+g”,y) 

xes= = 4 x 3 / 4 ( x ’ 1 + & x / x * ) *  

-,y”(x) = 2 m [ - ; m w 2 + a E / x  - I ‘ ( l ’+ 1)/2mx2],y(x)  

and choosing g = x - ~ ’ ~  this becomes 

Inserting this expression and r 2  = x into equation (8) yields 

(9) 

where we again have I’ = i1-i. If we also make the other transformations (6a,b) we 
obtain the radial Schrodinger equation for the Coulomb problem (i.e. ,y is just the 
Coulomb radial wavefunction x C ) ,  and we again obtain the Coulomb energy levels of 
equation (7) from equation (3) without direct evaluation. However, we now also have 
the transformation between the oscillator and Coulomb bound state wavefunctions 

where for both functions , ynL(y )  + y L + ’  as y + 0 and where N is chosen so that if one 
function is normalised then so is the other. Note that the above transformation 
preserves the number of nodes in the wavefunction, and so (as in the semiclassical 
problem) n is the same in the oscillator and Coulomb cases. However, we are again 
mapping from 1 to I’ = i1-2, so if 1 is integral then 1’ is not. This, though, does not 
present a problem, since it is not necessary for I to be integral to solve equation (8) or for 
1’ to be integral to solve equation (9). We may therefore regard these equations as 
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defining radial wavefunctions for continuous 1 and f'(1, l '>  - 1) which are related by 
equation (10). 

To return to the problem of the normalisation of the wavefunctions we require 

and inserting the expressions (10) we obtain 2N2 = l/(r2)ET = (x-'):~. This is a special 
case of the result V(X));~, = 2N2(r2f(r2))z7. The normalised oscillator radial wavefunc- 
tion may be written 

where Lf;e'l2 are the associated Laguerre polynomials and /3 = mw. Under the trans- 
formations ( 6 4 b )  p becomes 2( - 2mE')''2 = 2K, and we readily obtain N 2  = 
P/2(2n + 1 + $ )  which becomes K/2(n + I ! +  1). Equation (10) then immediately gives 
the correctly normalised radial Coulomb wavefunction 

where for integral I' we may replace the r function by the more usual expression 
(n  +21'+ l ) !  (Schiff 1955). 

The above mapping of the Schrodinger equations is also valid in the scattering 
problem. We obtain Rutherford scattering from the Coulomb potential for E'> 0 and 
any z, whence equations (6a,b)  give the obvious result that for scattering from an 
oscillator we can have any E but must have w 2  < 0. While Rutherford scattering is an 
extremely important physical phenomenon, the scattering from an inverted three- 
dimensional oscillator is perhaps not so interesting. However, many physical processes 
are strongly influenced by barrier penetration, and the parabolic approximation is often 
made for penetration near the top of a barrier. The result for the transmission 
coefficient is well known (e.g. Ford et a1 1959), but it is interesting here to see how this 
result may be related to the Coulomb scattering matrix for non-integral angular 
momenta. 

For Coulomb scattering the two relevant physical quantities are the wavenumber 
k = +(2mE')'/2 (we now have E'>O) and the Coulomb parameter 7 = mz/k which 
transform, according to equations (6a,b), to k =$my and = - E / 2 y  with y = 
+ ( - w 2 ) ' / * ( w 2 <  0 for the scattering problem). Since we want to map the Coulomb 
wavefunctions on to those of the problem of scattering from a one-dimensional 
parabolic barrier we must take 1' = -d (to obtain 1 = 0 from equation (6c) )  and we must 
admit the irregular Coulomb wavefunction for 1 '=  -t in order to relax the boundary 
condition ,yosC(O) = 0. However, the irregular Coulomb wavefunction for 1' = - a  
behaves at the origin as x ' ' ~  (i.e. xL+' with L = -2) and is therefore just the regular 
function for I '= -$  

For large x the asymptotic form of the Coulomb wavefunction may be written 
(Landau and Lifshitz 1977) 

x? CC exp{- i[kx - 7 ln(2kx)I)-~? exp(-i.rr/') exp{i[kx - 7 ln(2kx)l) 

with SF = r(/'+ 1 + iq ) / r ( l '  + 1 - i7). Consider then the linear combination comprising 
equal amplitudes of x?1/4 and ,yf3/4 for which the incident waves are exactly in phase. 
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We obtain the asymptotic form of the wavefunction 

+-exp{-i[kx-q ln(2kx)]}+S exp{i[kx-q ln(2kx)l}, 

with S = -t(sf1/4 + iSC3l4) exp($rr). (Note that the incident and outgoing Coulomb 
waves in the above expression are just plane waves except for the logarithmic terms in 
the phase, and that for large x the waves still correspond to a particle flux which is 
independent of x . )  Besides containing non-integral values of I‘ the function 4 does not 
represent a physical scattering solution because unitarity is violated, i.e. /SI2 # 1. 

The above scattering solutions can no longer be normalised according to equation 
(1 l), but we may still use equation (10) in the form xosc(r) - r-1’2,yC(r“). We thus obtain 
an incident ‘oscillator’ wave 

exp{-i[tmyr’ + ( ~ / 2 y )  1n(myr’”}r-’’’ 

and an outgoing wave 

s exp{i[tmyr2 + ( ~ / 2 y )  1n(myr’)]}r-’’’. 

These waves still represent constant particle flux, for although the particle density falls 
off as r-’ the asymptotic local momentum is just myr. The function r - ’ / ’~?~ /~ ( r ’ )  now 
tends to a constant value as r + 0 and r-*/’~?~/4(r’) behaves as r. For negative r we may 
take the solutions ,yo“( - r) - Irl-’/’,yC(r2) and in order to match the wavefunctions 
across r = 0 we must reverse the sign of the regular component. Thus for large negative 
r we obtain no component of 

exp{-i[$myr’ + ( ~ / 2 y )  ln(myr’)]}~r/-’~’ 

but only the term 

S exp{i[tmyr’ + ( ~ / 2 y )  ln(myr’)]}lr/-’/* 

with S = ;(SC1/4 - iSc3/4) exp($irr). Note that this component again represents an 
outgoing wave, since the asymptotic local momentum myr is negative for negative r. We 
also see that if we consider the outgoing flux on both sides of the origin we satisfy 
unitarity, i.e. [SI2 + ]SI’ = 1, and we have therefore constructed the physical solution for 
scattering from a one-dimensional parabolic barrier. This being the case, our ‘scatter- 
ing matrix’ S must contain the bound states of the one-dimensional oscillator as poles 
(de Alfaro and Regge 1965). Writing S explicitly we have 

The r function in the first numerator has poles at E = - iy(2m +$), and in the second at 
E = -iy(2m +f) with m = 0, 1, . . .. For a bound state the outgoing waves must be 
exponentially damped, and we must therefore take y = io (with o real and positive). 
We thus obtain bound states at E = (2m + 1 +$)U and E = (2m +$)U, or combining 
these equations E = ( m  +$)W.  Thus all the correct poles are indeed contained in S (i.e. 
in the Coulomb S matrix for I t =  -$, -a). 

The barrier transmission factor T is readily obtained from T = Is/* = 1 - /SI‘, and we 
find after a little manipulation of the r functions (Abramowitz and Stegun 1965) the 
well known expression T = [l +exp(-2rrE/y)]-’. The phase of the reflected wave is 
also easily shown to be 

a r g ~  = 2  argr(S-$iE/y)-tan-’{[l - e x p ( . r r ~ l y ) ] / [ l + e x p ( r r ~ / y ) l ) - t r r .  
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The above results show an intimate connection between the two best known soluble 
problems in nonrelativistic quantum mechanics. 
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